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Abstract
Smartwatches allow ubiquitous and mobile interaction with
digital contents. Because of the small screen sizes, tradi-
tional interaction techniques are often not applicable. In this
work, we show how the degree of freedom offered by the
elbow joint, i.e., flexion and extension, can be leveraged as
an additional one-handed input modality for smartwatches.
By moving the watch towards or away from the body, the
user is able to provide input to the smartwatch without a
second hand. We present the results of a controlled ex-
periment focusing on the human capabilities for proximity-
based interaction. Based on the results, we propose guide-
lines for designing proximity-based smartwatch interfaces
and present ProxiWatch: a one-handed and proximity-
based input modality for smartwatches alongside a proto-
typical implementation.
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ACM Classification Keywords
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Introduction and Related Work
Highly capable smartwatches have become an emerging
class of wearable devices that allow ubiquitous and mo-
bile interaction with digital contents. Such devices usually
consist of small multi-touch displays, bundled together with
computing and sensing hardware from a mid-range smart
phone, worn on the user’s wrist. Therefore, smartwatches
allow users to see, access and modify information right
at their wrist, anytime and anywhere. The screen size of
such devices is a tradeoff between mobility and interaction
space. The evolution of wearable devices shows a trend
towards small and elegant devices with small interaction
space [9].

Figure 1: A launcher application
as an example for a) one-handed
proximity-based interaction: The
user can open an application by
raising his arm at different
distances (b-d).

Therefore, traditional interaction techniques are not directly
applicable to smartwatches. Current consumer devices
(e.g. Apple Watch, Android Wear, Pebble Watch) mainly
focus on 1) touch-based interfaces, 2) physical input con-
trols on the frame of the device (e.g. a digital crown, but-
tons) and 3) off-device input modalities such as voice input.
While practical and useful, those styles of interaction have
various drawbacks in the context of smartwatches. Tradi-
tional touch-based interaction techniques suffer from small
screen sizes as the user’s interacting finger occludes a big
part of the screen. Physical input controls such as a digital
crown allow to interact with the content without occluding
the screen. However, these approaches do not support for
direct targeting and selecting of UI elements. In addition,
touch interfaces as well as physical input controls require
both hands of the user and, thus, may diminish the user ex-
perience in situations where the user is encumbered [8].
Voice input lacks direct manipulation and is difficult to use
in noisy environments. Despite the advantages of using
natural language, voice input is not suited for continuous
interactions and is not socially appropriate in some situa-
tions [12].

In recent years, work is emerging that addresses these in-
teraction challenges: Research presented on-device input
modalities beyond traditional touch-based interfaces using
a finger-mounted stylus [14] or tapping gestures [10] on the
device. As another approach, off-device input modalities
have been proposed that increase the interaction space
of such devices through leveraging the space around the
device: Using infrared, acoustic or magnetic sensors em-
bedded into the frame, the device can track the location
of the fingertip of the user’s dominant hand. This allows
users to perform off-screen (multi-)touch [1, 3] or air ges-
tures [2, 5, 6] around the device or on surrounding sur-
faces [13] and, thus, without occluding the content on the
screen. Despite the advantages, the presented approaches
still require both hands of the user. As another approach,
one-handed interfaces have been proposed that allow users
to trigger a set of actions by performing gestures with their
finger or hand [4, 6, 11, 15] of their non-dominant arm.
While such interfaces can be operated with one hand, they
do not support for continuous interactions.

We propose a novel interaction modality to operate smart-
watches. We leverage the proximity of the hand relative to
the user’s body as an additional input dimension for one-
handed interaction. We focus on the degree of freedom
offered by the elbow joint, i.e., flexion (moving the hand
towards to body) and extension (moving the hand away
from the body). This allows users to interact with the smart-
watch by moving the hand alongside their line of sight. For
instance, users can trigger shortcuts just by raising their
hand at a specific distance (c.f. Figure 1).

In this paper, we explore the concept of proximity-based
interaction for smartwatches. We 1) contribute the results
of a user study focusing on the human capabilities for a
proximity-based input modality for smartwatches. Based on
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our lessons learned from the study, we 2) propose guide-
lines for the design of proximity-based interfaces for smart-
watches. Last, we 3) present ProxiWatch: an interaction
concept and prototypical implementation for one-handed
and proximity-based input for smartwatches.

Controlled Experiment

Figure 2: The setup of the
controlled experiment with two
retro-reflective apparatuses
mounted on the participant’s head
and wrist and the display showing
the current task.

We conducted a controlled experiment to investigate how
efficiently and accurately users can raise the hand to a
given target position in the space in front of them without
any visual feedback. For this, we recruited 15 participants
(5 female, 2 left-handed), aged between 19 and 30 years,
using the University’s mailing address. None of them had
prior experience with smartwatches. Eight were users of
regular watches in everyday life. We chose a within-subject
design. No compensation was provided.

Design and Task
We defined a basic information space alongside the par-
ticipants line of sight, evenly split into multiple layers and
numbered in ascending order. The participants task was to
raise their arm at a specified target layer without any visual
feedback. We varied the number of layers as an indepen-
dent variable with integer values from 2-8. We defined the
maximum boundary of the interaction space with the partic-
ipant’s individual arm-length and the minimum boundary as
the near point of the human’s eye (not closer than 12.5cm
to the user’s face). However, we told the participants to use
the space that is most comfortable for them as an interac-
tion space.

Setup
We used an optical tracking system (OptiTrack) to mea-
sure the distance alongside the line of sight between the
participant’s wrist and eyes. As shown in Figure 2, partic-
ipants wore a wristband at the typical watch position on

their non-dominant hand and a pair of glasses, each aug-
mented with a set of retro-reflective markers, during the ex-
periment (c.f. Figure 2). We placed a display in front of the
participants that showed the current task (layer subdivision
and target layer within this subdivision). Additionally, we
mounted a button within the reach of their dominant hand.
For each trial, we measured the distance between wrist
and eyes and logged it together with the target layer and
the condition (total amount of layers).

Procedure
We used a repeated measure design with 7 levels for the
number of layers (2, 3, . . . , 7 and 8). For each level, the
participants targeted each layer with 5 repetitions. This re-
sulted in a total of (2 + 3 + 4 + 5 + 6 + 7 + 8) ∗ 5 = 175
trials per participant. The order of conditions as well as the
order of targets within each condition was counterbalanced
using a Balanced Latin Square design.

After welcoming the participants, we introduced them to the
concept and the setup of the study. We mounted the two
trackable apparatuses and calibrated the system to adapt
it to the respective arm length. Before each condition, we
told the participants about the layer subdivision for this task.
Each trial was started by asking the participant to stand
relaxed and lower his non-dominant arm. Once ready, the
user pressed the button to start the trial. After that, the sys-
tem showed the target layer as a number from 1 (nearest
layer to the body) to the maximum layer of the current con-
dition (2-8). Then, the participants raised their hand at the
position where they imagined the respective layer with the
backside of the hand towards their body. We told the par-
ticipants to look at the center of the trackable apparatus on
their wrist as if it was a watch. After raising their hand, par-
ticipants had to confirm their action by pressing the nearby
mounted button with their non-interacting hand.
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Figure 3: The interaction space of the participants. Black dots
show the recorded distances normalized to the arm size, red dots
show the center point of the interaction space. The used space
differs significantly between participants.

In the following, the system asked the user to take their
hand down and enforced a 5 second break before starting
the next trial.

We told the participants to focus on the accuracy instead of
the speed. Participants did not receive any feedback during
the study. After each condition, participants took a 30 sec-
ond break. The complete experiment took about 30 minutes
for each participant.

Results
We normalized the recorded data to the respective arm
length into a scale from 0 . . . 1. In this scale, 0 refers to the
near point of the human eye (12.5 cm) and 1 to the arm
length of the user from shoulder to wrist. This maximum
arm reach was measured in the calibration process with
the same optical tracking system. We analyzed the data
using repeated measures ANOVA and applied Bonferroni
corrected pairwise t-tests for the post-hoc analysis.

Figure 4: The distances for three exemplary participants for layer
subdivision n = 4, scaled to their personal interaction space. A
global model to classify points to a target layer is not possible.
However, individual models per user are possible.

Personal Interaction Space
We asked the participants to separate the space into lay-
ers in a way that is convenient for them. We found that the
interaction space used by the participants as well as the
center point of all interactions differs significantly (F14,84 =
8.645; p < 0.001) between participants (Min: P14, 0.0 −
0.51 with one outlier, center point of interaction µ=0.24,
Max: P4, 0.0 − 0.98, center point of interaction µ=0.54).
Figure 3 shows the interaction space of all participants nor-
malized to their arm length. This personal interaction space
for each participant remained constant for different layer
subdivisions. For all further evaluations, we scaled the data
based on the personal interaction space of each participant
with 0 as the closest and 1 the most distant data point.

Directly Accessible Layers
We found that the size and the location of the center points
of the layers differ significantly (Size: F14,98 = 2.582;
p < 0.01, Location: F14,98 = 6.893; p < 0.001) between
participants even after scaling the data to the personal in-
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teraction space of each participant. A general model that
is able to map points from every user into the respective
target layer is, therefore, not feasible for layer subdivisions
> 2 as the layers overlap between participants. Within the
data of individual participants however, a more finegrained
differentiation between the layer zones is possible with no
overlapping layers for a subdivision of at least 4 for all par-
ticipants. Figure 4 shows the data points for three partici-
pants for a subdivision of four layers. The analysis further
showed smaller layers for the outer regions (i.e. close to
and far away from the body) compared to the inner regions
(Inner: µ = 0.16, σ = 0.06, Outer: µ = 0.12, σ = 0.07).
This is not influenced by the personal interaction spaces of
the participants.

Figure 5: Example application for
discrete interaction: An application
launcher that allows users to
launch applications by raising their
arm.

Figure 6: Example application for
continuous interaction: A
brightness control that lets the user
modify the value by moving the
arm alongside the line of sight.

Implications
Respect the personal interaction space

Our experiment showed that every user has a per-
sonal convenient interaction space that is not gener-
alizable over multiple users. Thus, a system should
not force the user into a fixed set of layers that spans
larger or smaller than the user’s personal interaction
space.

Provide bigger layers in the inner regions
The outer layers of the mental model of participants
are smaller than the inner layers. Therefore, a system
might use smaller layers on the outside and increase
the size of the inner layers to support the user.

Use a personal model to achieve the best recognition rate
We found that the location and size of the layer in the
mental model of the participants differed within their
individual interaction spaces. Therefore, a general
model over all users is not feasible and, thus, a per-
sonal model is necessary to achieve the best recogni-
tion rate for higher subdivisions.

ProxiWatch
The results discussed above together with prior work focus-
ing on the human capabilities for continuous interaction [7]
showed that proximity-based interaction with smartwatches
is a viable concept. Based on the findings, we developed
ProxiWatch: A one-handed proximity-based hand input
modality for smartwatches along with two main interaction
techniques. In addition, we implemented two example appli-
cations to show the usefulness for varying scenarios.

Discrete Interaction
Discrete interaction is based on the directly accessible lay-
ers found in the study. Within this set of layers, each layer
can be mapped to a functionality in terms of a shortcut.
Such a system can be used to directly select various items
in a fixed set of objects (e.g. launcher, media player con-
trols) by raising the arm within the boundaries of one of
the target zones in front of the body. As a result of the pre-
sented experiment, we found that 4 layers are easily dis-
tinguishable for users. We showcase this interaction tech-
nique using an application launcher for the smartwatch.
This launcher allows users to open up a favorite application
by raising the arm (c.f. Figure 5). This technique supports
quick and immediate interaction with a smartwatch.

Continuous Interaction
Continuous interaction allows the user to adjust a contin-
uous value by moving the hand within the bounds of the
personal interaction space. Through visual feedback on the
smartwatch, the user is able to quickly and efficiently adjust
a value (e.g. slider) just by moving the arm. We also pro-
pose this interaction technique as an extension to discrete
interaction for lists with more elements. We illustrate this
technique with a brightness control for the smartwatch that
allows users to adjust the value by moving the hand. The
user can select a value by lowering the hand.
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Both presented interaction techniques can be combined
(i.e. discrete interaction to launch an application, continu-
ous interaction to adjust a value). Furthermore, traditional
touch-based input is possible on each layer.

Figure 7: Iterative design of the
prototype: a) First version using a
generic ultrasonic and infrared
sensor b) second version using two
infrared sensors c) third version
with tilted infrared sensor
alignment d) current version with
boxed design

Technical Overview
We built a stand-alone, wireless prototype to enable proximity-
based interaction concepts on a consumer smartwatch
(Motorola Moto 360) in an iterative process (c.f. Figure 7).We
used a battery powered Arduino Nano with two infrared
distance sensors (Sharp GP2Y0A21YK0F). When holding
the hand in a rotation that allows to read the display of the
watch, both sensors are directed towards the body of the
user. However, the angle of both sensors towards the body
is slightly different (c.f. Figure 7 f). The system reports the
value of the first sensor as long as this sensor has the body
of the user within its field of view. Otherwise, the value of
sensor two is reported (c.f. Figure 8). Depending on the
body structure of the user, the handover point is found
around 20cm distance. Because of the limited processing
capabilities of the Arduino, we transmit the raw sensor data
to a processing application on a mobile phone (Samsung
Galaxy S4) via Bluetooth. The phone handles the incom-
ing raw data and selects the appropriate sensor. In addi-
tion, we use a Kalman filter to reduce the statistical noise of
the returning sensor values. After processing, we send the
estimated distance to the smartwatch. To detect if a user
has raised his arm, we use the acceleration sensor of the
smartwatch. This allows to support the presented discrete
interaction technique. Furthermore, the acceleration sensor
is used to register a shake-wrist gesture which can be used
for secondary actions (i.e. select item).

We compared the estimated distance values of our proto-
type to the real distance and found that our prototype ro-
bustly recognizes the distance to the user for the complete

Figure 8: The estimated distance values reported by the two
sensors compared to the real distance. The handover between
both sensors is at ∼21cm.

interaction space (µ = 1.9cm, σ = 1.19cm, c.f. Figure 8).
Future work is needed to improve the quality of the mea-
surements and to further miniaturize the prototype.

Conclusion and Future Work
In this paper, we explored how the proximity of the hand
can be leveraged as an additional input dimension for smart-
watches. We reported on the results of a controlled ex-
periment focusing on the human capabilities. The results
confirmed the applicability of our concept. Based on the re-
sults, we proposed guidelines and presented ProxiWatch: A
set of concepts and prototype implementation of a proximity-
based input enabled smartwatch. As a next step, we plan
to investigate more deeply how proximity-based interac-
tion can enhance real world smartwatch usage using the
presented prototype. Furthermore, we want to explore fur-
ther proximity dimensions of the hand beyond the degree of
freedom provided by the elbow joint.
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